Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Angew Chem Int Ed Engl ; 62(21): e202301147, 2023 05 15.
Article in English | MEDLINE | ID: covidwho-2281045

ABSTRACT

Peptide vaccines have advantages in easy fabrication and high safety, but their effectiveness is hampered by the poor immunogenicity of the epitopes themselves. Herein, we constructed a series of framework nucleic acids (FNAs) with regulated rigidity and size to precisely organize epitopes in order to reveal the influence of epitope spacing and carrier rigidity on the efficiency of peptide vaccines. We found that assembling epitopes on rigid tetrahedral FNAs (tFNAs) with the appropriate size could efficiently enhance their immunogenicity. Further, by integrating epitopes from SARS-CoV-2 on preferred tFNAs, we constructed a COVID-19 peptide vaccine which could induce high titers of IgG against the receptor binding domain (RBD) of SARS-CoV-2 spike protein and increase the ratio of memory B and T cells in mice. Considering the good biocompatibility of tFNAs, our research provides a new idea for developing efficient peptide vaccines against viruses and possibly other diseases.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , COVID-19/prevention & control , SARS-CoV-2/metabolism , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/metabolism , Epitopes, B-Lymphocyte/chemistry , Peptides , Vaccines, Subunit
2.
BMC Bioinformatics ; 24(1): 67, 2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2280689

ABSTRACT

BACKGROUND: Streptococcus pneumoniae (Pneumococcus) has remained a leading cause of fatal infections such as pneumonia, meningitis, and sepsis. Moreover, this pathogen plays a major role in bacterial co-infection in patients with life-threatening respiratory virus diseases such as influenza and COVID-19. High morbidity and mortality in over one million cases, especially in very young children and the elderly, are the main motivations for pneumococcal vaccine development. Due to the limitations of the currently marketed polysaccharide-based vaccines, non-serotype-specific protein-based vaccines have received wide research interest in recent years. One step further is to identify high antigenic regions within multiple highly-conserved proteins in order to develop peptide vaccines that can affect various stages of pneumococcal infection, providing broader serotype coverage and more effective protection. In this study, immunoinformatics tools were used to design an effective multi-epitope vaccine in order to elicit neutralizing antibodies against multiple strains of pneumococcus. RESULTS: The B- and T-cell epitopes from highly protective antigens PspA (clades 1-5) and PhtD were predicted and immunodominant peptides were linked to each other with proper linkers. The domain 4 of Ply, as a potential TLR4 agonist adjuvant candidate, was attached to the end of the construct to enhance the immunogenicity of the epitope vaccine. The evaluation of the physicochemical and immunological properties showed that the final construct was stable, soluble, antigenic, and non-allergenic. Furthermore, the protein was found to be acidic and hydrophilic in nature. The protein 3D-structure was built and refined, and the Ramachandran plot, ProSA-web, ERRAT, and Verify3D validated the quality of the final model. Molecular docking analysis showed that the designed construct via Ply domain 4 had a strong interaction with TLR4. The structural stability of the docked complex was confirmed by molecular dynamics. Finally, codon optimization was performed for gene expression in E. coli, followed by in silico cloning in the pET28a(+) vector. CONCLUSION: The computational analysis of the construct showed acceptable results, however, the suggested vaccine needs to be experimentally verified in laboratory to ensure its safety and immunogenicity.


Subject(s)
COVID-19 , Streptococcus pneumoniae , Child , Humans , Child, Preschool , Aged , Molecular Docking Simulation , Escherichia coli , Toll-Like Receptor 4 , Epitopes, T-Lymphocyte/chemistry , Vaccines, Subunit/chemistry , Vaccines, Subunit/genetics , Epitopes, B-Lymphocyte , Computational Biology/methods
3.
Biotechnol Appl Biochem ; 70(3): 1189-1205, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2172675

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown rapid global spread and has resulted in a significant death toll worldwide. In this study, we aimed to design a multi-epitope vaccine against SARS-CoV-2 based on structural proteins S, M, N, and E. We identified B- and T-cell epitopes and then the antigenicity, toxicity, allergenicity, and similarity of predicted epitopes were analyzed. T-cell epitopes were docked with corresponding HLA alleles. Consequently, the selected T- and B-cell epitopes were included in the final construct. All selected epitopes were connected with different linkers and flagellin and pan-HLA DR binding epitopes (PADRE) as an adjuvant were used in the vaccine construct. Furthermore, molecular docking was used to evaluate the complex between the final vaccine construct and two alleles, HLA-A*02:01 and HLA-DRB1*01:01. Finally, codons were optimized for in silico cloning into pET28a(+) vector using SnapGene. The final vaccine construct comprised 11 CTL, HTL, and B-cell epitopes corresponding to 394 amino acid residues. In silico evaluation showed that the designed vaccine might potentially promote an immune response. Further in vivo preclinical and clinical testing is required to determine the safety and efficacy of the designed vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Immunodominant Epitopes/genetics , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/chemistry , COVID-19 Vaccines/genetics , Molecular Docking Simulation , Computational Biology/methods
4.
J Transl Med ; 20(1): 389, 2022 09 04.
Article in English | MEDLINE | ID: covidwho-2009423

ABSTRACT

BACKGROUND: Streptococcus pneumoniae is the leading reason for invasive diseases including pneumonia and meningitis, and also secondary infections following viral respiratory diseases such as flu and COVID-19. Currently, serotype-dependent vaccines, which have several insufficiency and limitations, are the only way to prevent pneumococcal infections. Hence, it is plain to need an alternative effective strategy for prevention of this organism. Protein-based vaccine involving conserved pneumococcal protein antigens with different roles in virulence could provide an eligible alternative to existing vaccines. METHODS: In this study, PspC, PhtD and PsaA antigens from pneumococcus were taken to account to predict B-cell and helper T-cell epitopes, and epitope-rich regions were chosen to build the construct. To enhance the immunogenicity of the epitope-based vaccine, a truncated N-terminal fragment of pneumococcal endopeptidase O (PepO) was used as a potential TLR2/4 agonist which was identified by molecular docking studies. The ultimate construct was consisted of the chosen epitope-rich regions, along with the adjuvant role (truncated N-PepO) and suitable linkers. RESULTS: The epitope-based vaccine was assessed as regards physicochemical properties, allergenicity, antigenicity, and toxicity. The 3D structure of the engineered construct was modeled, refined, and validated. Molecular docking and simulation of molecular dynamics (MD) indicated the proper and stable interactions between the vaccine and TLR2/4 throughout the simulation periods. CONCLUSIONS: For the first time this work presents a novel vaccine consisting of epitopes of PspC, PhtD, and PsaA antigens which is adjuvanted with a new truncated domain of PepO. The computational outcomes revealed that the suggested vaccine could be deemed an efficient therapeutic vaccine for S. pneumoniae; nevertheless, in vitro and in vivo examinations should be performed to prove the potency of the candidate vaccine.


Subject(s)
COVID-19 , Streptococcus pneumoniae , Adjuvants, Immunologic , Antigens, Bacterial , Bacterial Proteins , Computational Biology , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/chemistry , Humans , Metalloendopeptidases , Molecular Docking Simulation , Molecular Dynamics Simulation , Toll-Like Receptor 2 , Vaccines, Subunit/chemistry
5.
SAR QSAR Environ Res ; 33(9): 649-675, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2008373

ABSTRACT

The pandemic of COVID-19 caused by SARS-CoV-2 has made a worldwide health emergency. Despite the fact that current vaccines are readily available, several SARSCoV-2 variants affecting the existing vaccine are to be less effective due to the mutations in the structural proteins. Furthermore, the appearance of the new variants cannot be easily predicted in the future. Therefore, the attempts to construct new vaccines or to modify the current vaccines are still pivotal works for preventing the spread of the virus. In the present investigation, the computational analysis through immunoinformatics, molecular docking, and molecular dynamics (MD) simulation is employed to construct an effective vaccine against SARS-CoV2. The structural proteins of SARS-CoV2 are utilized to create a multiepitope-based vaccine (MEV). According to our findings presented by systematic procedures in the current investigation, the MEV construct may be able to trigger a strong immunological response against the virus. Therefore, the designed MEV could be a potential vaccine candidate against SARS-CoV-2, and also it is expected to be effective for other variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Humans , Immunogenicity, Vaccine , Molecular Docking Simulation , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , RNA, Viral , Vaccines, Subunit/chemistry
6.
Ann Hematol ; 101(9): 1959-1969, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1930396

ABSTRACT

SARS-CoV-2 infection has been reported to be associated with a positive direct antiglobulin test (DAT). In this study, an analysis of 40 consecutive coronavirus disease 2019 (COVID-19) cases from December 2020 to September 2021 in Japan revealed that patients of 70 years and over were predisposed to a positive DAT. DAT positivity was related to a decrease in the hemoglobin level. Anemia in DAT-positive COVID-19 patients was attributed to hemolysis, which was corroborated by high reticulocyte counts and an increase in the red blood cell distribution width. Human leukocyte antigen (HLA)-DRB1*12:01 and DRB1*12:02 were exclusively found in DAT-positive COVID-19 patients. In silico assays for the Spike protein of SARS-CoV-2 predicted several common core peptides that met the criteria for a B cell epitope and strong binding to both HLA-DRB1*12:01 and DRB1*12:02. Among these peptides, the amino acids sequence TSNFR, which is found within the S1 subunit of SARS-CoV-2 Spike protein, is shared by human blood group antigen Rhesus (Rh) CE polypeptides. In vitro analysis showed that the expression of HLA-DR in CD4+ T cells and CD8+ T cells from a DAT-positive patient was increased after pulsation with TSNFR-sequence-containing peptides. In summary, positive DAT is related to enhanced anemia and to HLA-DR12 in the Japanese population. A peptide sequence within SARS-CoV-2 Spike protein may act as an epitope for IgG binding to RBCs in DAT-positive COVID-19 patients.


Subject(s)
COVID-19 , CD8-Positive T-Lymphocytes , Coombs Test , Epitopes, T-Lymphocyte/chemistry , HLA-DR Serological Subtypes , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
PLoS One ; 17(2): e0263582, 2022.
Article in English | MEDLINE | ID: covidwho-1910522

ABSTRACT

The membrane protein M of the Porcine Epidemic Diarrhea Virus (PEDV) is the most abundant component of the viral envelope. The M protein plays a central role in the morphogenesis and assembly of the virus through protein interactions of the M-M, M-Spike (S) and M-nucleocapsid (N) type. The M protein is known to induce protective antibodies in pigs and to participate in the antagonistic response of the cellular antiviral system coordinated by the type I and type III interferon pathways. The 3D structure of the PEDV M protein is still unknown. The present work exposes a predicted 3D model of the M protein generated using the Robetta protocol. The M protein model is organized into a transmembrane and a globular region. The obtained 3D model of the PEDV M protein was compared with 3D models of the SARS-CoV-2 M protein created using neural networks and with initial machine learning-based models created using trRosetta. The 3D model of the present study predicted four linear B-cell epitopes (RSVNASSGTG and KHGDYSAVSNPSALT peptides are noteworthy), six discontinuous B-cell epitopes, forty weak binding and fourteen strong binding T-cell epitopes in the CV777 M protein. A high degree of conservation of the epitopes predicted in the PEDV M protein was observed among different PEDV strains isolated in different countries. The data suggest that the M protein could be a potential candidate for the development of new treatments or strategies that activate protective cellular mechanisms against viral diseases.


Subject(s)
Coronavirus Infections/virology , Coronavirus M Proteins/chemistry , Porcine epidemic diarrhea virus/chemistry , Swine Diseases/virology , Swine/virology , Amino Acid Sequence , Animals , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Coronavirus M Proteins/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Models, Molecular , Porcine epidemic diarrhea virus/immunology , Protein Conformation , Swine Diseases/immunology
8.
Genes Genomics ; 44(8): 937-944, 2022 08.
Article in English | MEDLINE | ID: covidwho-1877980

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic began in 2019 but it remains as a serious threat today. To reduce and prevent spread of the virus, multiple vaccines have been developed. Despite the efforts in developing vaccines, Omicron strain of the virus has recently been designated as a variant of concern (VOC) by the World Health Organization (WHO). OBJECTIVE: To develop a vaccine candidate against Omicron strain (B.1.1.529, BA.1) of the SARS-CoV-19. METHODS: We applied reverse vaccinology methods for BA.1 and BA.2 as the vaccine target and a control, respectively. First, we predicted MHC I, MHC II and B cell epitopes based on their viral genome sequences. Second, after estimation of antigenicity, allergenicity and toxicity, a vaccine construct was assembled and tested for physicochemical properties and solubility. Third, AlphaFold2, RaptorX and RoseTTAfold servers were used to predict secondary structures and 3D structures of the vaccine construct. Fourth, molecular docking analysis was performed to test binding of our construct with angiotensin converting enzyme 2 (ACE2). Lastly, we compared mutation profiles on the epitopes between BA.1, BA.2, and wild type to estimate the efficacy of the vaccine. RESULTS: We collected a total of 10 MHC I, 9 MHC II and 5 B cell epitopes for the final vaccine construct for Omicron strain. All epitopes were predicted to be antigenic, non-allergenic and non-toxic. The construct was estimated to have proper stability and solubility. The best modelled tertiary structures were selected for molecular docking analysis with ACE2 receptor. CONCLUSIONS: These results suggest the potential efficacy of our newly developed vaccine construct as a novel vaccine candidate against Omicron strain of the coronavirus.


Subject(s)
COVID-19 , Viral Vaccines , Angiotensin-Converting Enzyme 2 , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Humans , Molecular Docking Simulation , SARS-CoV-2/genetics , Vaccine Development , Vaccinology/methods , Viral Vaccines/chemistry , Viral Vaccines/genetics
9.
Mol Biol Evol ; 39(5)2022 05 03.
Article in English | MEDLINE | ID: covidwho-1831254

ABSTRACT

Evaluation of immunogenic epitopes for universal vaccine development in the face of ongoing SARS-CoV-2 evolution remains a challenge. Herein, we investigate the genetic and structural conservation of an immunogenically relevant epitope (C662-C671) of spike (S) protein across SARS-CoV-2 variants to determine its potential utility as a broad-spectrum vaccine candidate against coronavirus diseases. Comparative sequence analysis, structural assessment, and molecular dynamics simulations of C662-C671 epitope were performed. Mathematical tools were employed to determine its mutational cost. We found that the amino acid sequence of C662-C671 epitope is entirely conserved across the observed major variants of SARS-CoV-2 in addition to SARS-CoV. Its conformation and accessibility are predicted to be conserved, even in the highly mutated Omicron variant. Costly mutational rate in the context of energy expenditure in genome replication and translation can explain this strict conservation. These observations may herald an approach to developing vaccine candidates for universal protection against emergent variants of coronavirus.


Subject(s)
COVID-19 , Vaccines , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
10.
Arch Microbiol ; 204(5): 242, 2022 Apr 05.
Article in English | MEDLINE | ID: covidwho-1772889

ABSTRACT

The novel virus "severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)" has been responsible for the worldwide pandemic causing huge devastation and deaths since December 2019. The disease caused by this virus is known as COVID-19. The present study is based on immuno-informatics approach to develop a multi-epitope-loaded peptide vaccine to combat the COVID-19 menace. Here, we have reported the 9-mer CD8 T cell epitopes and 15-mer CD4 T cell epitopes, free from glycosylation sites, belonging to three proteins, viz. surface glycoprotein, membrane glycoprotein and envelope protein of this virus. Immunogenicity, aliphatic amino acid, antigenicity and hydrophilicity scores of the predicted epitopes were estimated. In addition, other physicochemical parameters, namely net charge, Boman index and amino acid contents, were also accounted. Out of all the epitopes, three CD8 T cell epitopes viz. PDPSKPSKR, DPSKPSKRS and QTQTNSPRR and three CD4 T cell epitopes viz. ASYQTQTNSPRRARS, RIGNYKLNTDHSSSS and RYRIGNYKLNTDHSS were found to be efficient targets for raising immunity in human against this virus. With the help of our identified potent epitopes, various pharma industries might initiate efforts to incorporate those epitopes with carrier protein or adjuvant to develop a multi-epitope-loaded peptide vaccine against SARS-CoV-2. The peptide vaccines are usually cost-effective and therefore, could be administered as a preventive measure to combat the spread of this disease. Proper clinical trials must be conducted prior to the use of identified epitopes as vaccine candidates.


Subject(s)
COVID-19 , Epitopes, T-Lymphocyte , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/chemistry , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Subunit
11.
Comput Biol Med ; 145: 105462, 2022 06.
Article in English | MEDLINE | ID: covidwho-1768008

ABSTRACT

The emergence of variants and the reports of co-infection caused by Candida auris in COVID-19 patients adds a further complication to the global pandemic situation. To date, no effective therapy is available for C. auris infections. Thus, characterization of therapeutic targets and designing effective vaccine candidates using subtractive proteomics and immune-informatics approaches is useful tool in controlling the emerging infections associated with SARS-CoV-2. In the current study, subtractive proteomics-assisted annotation of the vaccine targets was performed, which revealed seven vaccine targets. An immunoinformatic-driven approach was then employed to map protein-specific and proteome-wide immunogenic peptides (CTL, B cell, and HTL) for the design of multi-epitope vaccine candidates (MEVCs). The results demonstrated that the vaccine candidates possess strong antigenic features (>0.4 threshold score) and are classified as non-allergenic. Validation of the designed MEVCs through molecular docking, in-silico cloning, and immune simulation further demonstrated the efficacy of the vaccines by producing immune factor titers (ranging from 2500 to 16000 au/mL) i.e., IgM, IgG, IL-6, and Interferon-α. In conclusion, the current study provides a strong impetus in designing anti-fungal strategies against Candida auris.


Subject(s)
COVID-19 , Proteomics , Candida auris , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/chemistry , Humans , Immunity , Molecular Docking Simulation , SARS-CoV-2 , Vaccines, Subunit
12.
Microbiol Spectr ; 10(1): e0278021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1700612

ABSTRACT

Understanding the immune response to severe acute respiratory syndrome coronavirus (SARS-CoV-2) is critical to overcome the current coronavirus disease (COVID-19) pandemic. Efforts are being made to understand the potential cross-protective immunity of memory T cells, induced by prior encounters with seasonal coronaviruses, in providing protection against severe COVID-19. In this study we assessed T-cell responses directed against highly conserved regions of SARS-CoV-2. Epitope mapping revealed 16 CD8+ T-cell epitopes across the nucleocapsid (N), spike (S), and open reading frame (ORF)3a proteins of SARS-CoV-2 and five CD8+ T-cell epitopes encoded within the highly conserved regions of the ORF1ab polyprotein of SARS-CoV-2. Comparative sequence analysis showed high conservation of SARS-CoV-2 ORF1ab T-cell epitopes in seasonal coronaviruses. Paradoxically, the immune responses directed against the conserved ORF1ab epitopes were infrequent and subdominant in both convalescent and unexposed participants. This subdominant immune response was consistent with a low abundance of ORF1ab encoded proteins in SARS-CoV-2 infected cells. Overall, these observations suggest that while cross-reactive CD8+ T cells likely exist in unexposed individuals, they are not common and therefore are unlikely to play a significant role in providing broad preexisting immunity in the community. IMPORTANCE T cells play a critical role in protection against SARS-CoV-2. Despite being highly topical, the protective role of preexisting memory CD8+ T cells, induced by prior exposure to circulating common coronavirus strains, remains less clear. In this study, we established a robust approach to specifically assess T cell responses to highly conserved regions within SARS-CoV-2. Consistent with recent observations we demonstrate that recognition of these highly conserved regions is associated with an increased likelihood of milder disease. However, extending these observations we observed that recognition of these conserved regions is rare in both exposed and unexposed volunteers, which we believe is associated with the low abundance of these proteins in SARS-CoV-2 infected cells. These observations have important implications for the likely role preexisting immunity plays in controlling severe disease, further emphasizing the importance of vaccination to generate the immunodominant T cells required for immune protection.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Amino Acid Sequence , CD8-Positive T-Lymphocytes/immunology , COVID-19/genetics , COVID-19/virology , Conserved Sequence , Coronavirus/chemistry , Coronavirus/classification , Coronavirus/genetics , Coronavirus/immunology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cross Reactions , Epitope Mapping , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Humans , Memory T Cells/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
13.
Front Immunol ; 12: 764949, 2021.
Article in English | MEDLINE | ID: covidwho-1674330

ABSTRACT

We identified SARS-CoV-2 specific antigen epitopes by HLA-A2 binding affinity analysis and characterized their ability to activate T cells. As the pandemic continues, variations in SARS-CoV-2 virus strains have been found in many countries. In this study, we directly assess the immune response to SARS-CoV-2 epitope variants. We first predicted potential HLA-A*02:01-restricted CD8+ T-cell epitopes of SARS-CoV-2. Using the T2 cell model, HLA-A*02:01-restricted T-cell epitopes were screened for their binding affinity and ability to activate T cells. Subsequently, we examined the identified epitope variations and analyzed their impact on immune response. Here, we identified specific HLA-A2-restricted T-cell epitopes in the spike protein of SARS-CoV-2. Seven epitope peptides were confirmed to bind with HLA-A*02:01 and potentially be presented by antigen-presenting cells to induce host immune responses. Tetramers containing these peptides could interact with specific CD8+ T cells from convalescent COVID-19 patients, and one dominant epitope (n-Sp1) was defined. These epitopes could activate and generate epitope-specific T cells in vitro, and those activated T cells showed cytolytic activity toward target cells. Meanwhile, n-Sp1 epitope variant 5L>F significantly decreased the proportion of specific T-cell activation; n-Sp1 epitope 8L>V variant showed significantly reduced binding to HLA-A*02:01 and decreased proportion of n-Sp1-specific CD8+ T cell, which potentially contributes to the immune escape of SARS-CoV-2. Our data indicate that the variation of a dominant epitope will cause the deficiency of HLA-A*02:01 binding and T-cell activation, which subsequently requires the formation of a new CD8+ T-cell immune response in COVID-19 patients.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Amino Acid Sequence , Antigen Presentation , Antigenic Variation , COVID-19/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Female , Humans , Immune Evasion , Lymphocyte Activation , Male , Middle Aged , Molecular Docking Simulation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
14.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: covidwho-1598089

ABSTRACT

The current global pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has taken a substantial number of lives across the world. Although few vaccines have been rolled-out, a number of vaccine candidates are still under clinical trials at various pharmaceutical companies and laboratories around the world. Considering the intrinsic nature of viruses in mutating and evolving over time, persistent efforts are needed to develop better vaccine candidates. In this study, various immuno-informatics tools and bioinformatics databases were deployed to derive consensus B-cell and T-cell epitope sequences of SARS-CoV-2 spike glycoprotein. This approach has identified four potential epitopes which have the capability to initiate both antibody and cell-mediated immune responses, are non-allergenic and do not trigger autoimmunity. These peptide sequences were also evaluated to show 99.82% of global population coverage based on the genotypic frequencies of HLA binding alleles for both MHC class-I and class-II and are unique for SARS-CoV-2 isolated from human as a host species. Epitope number 2 alone had a global population coverage of 98.2%. Therefore, we further validated binding and interaction of its constituent T-cell epitopes with their corresponding HLA proteins using molecular docking and molecular dynamics simulation experiments, followed by binding free energy calculations with molecular mechanics Poisson-Boltzmann surface area, essential dynamics analysis and free energy landscape analysis. The immuno-informatics pipeline described and the candidate epitopes discovered herein could have significant impact upon efforts to develop globally effective SARS-CoV-2 vaccines.


Subject(s)
COVID-19 Vaccines , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Molecular Docking Simulation , SARS-CoV-2 , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Vaccines, Subunit/chemistry , Vaccines, Subunit/immunology
15.
PLoS One ; 16(11): e0258645, 2021.
Article in English | MEDLINE | ID: covidwho-1518355

ABSTRACT

All approved coronavirus disease 2019 (COVID-19) vaccines in current use are safe, effective, and reduce the risk of severe illness. Although data on the immunological presentation of patients with COVID-19 is limited, increasing experimental evidence supports the significant contribution of B and T cells towards the resolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Despite the availability of several COVID-19 vaccines with high efficacy, more effective vaccines are still needed to protect against the new variants of SARS-CoV-2. Employing a comprehensive immunoinformatic prediction algorithm and leveraging the genetic closeness with SARS-CoV, we have predicted potential immune epitopes in the structural proteins of SARS-CoV-2. The S and N proteins of SARS-CoV-2 and SARS-CoVs are main targets of antibody detection and have motivated us to design four multi-epitope vaccines which were based on our predicted B- and T-cell epitopes of SARS-CoV-2 structural proteins. The cardinal epitopes selected for the vaccine constructs are predicted to possess antigenic, non-allergenic, and cytokine-inducing properties. Additionally, some of the predicted epitopes have been experimentally validated in published papers. Furthermore, we used the C-ImmSim server to predict effective immune responses induced by the epitope-based vaccines. Taken together, the immune epitopes predicted in this study provide a platform for future experimental validations which may facilitate the development of effective vaccine candidates and epitope-based serological diagnostic assays.


Subject(s)
Computational Biology , Epitope Mapping , SARS-CoV-2/immunology , Viral Structural Proteins/immunology , Amino Acid Sequence , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Databases as Topic , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Models, Molecular , Protein Conformation , Reproducibility of Results , Viral Structural Proteins/chemistry
16.
Cells ; 10(11)2021 11 04.
Article in English | MEDLINE | ID: covidwho-1502369

ABSTRACT

During the current era of the COVID-19 pandemic, the dissemination of Mucorales has been reported globally, with elevated rates of infection in India, and because of the high rate of mortality and morbidity, designing an effective vaccine against mucormycosis is a major health priority, especially for immunocompromised patients. In the current study, we studied shared Mucorales proteins, which have been reported as virulence factors, and after analysis of several virulent proteins for their antigenicity and subcellular localization, we selected spore coat (CotH) and serine protease (SP) proteins as the targets of epitope mapping. The current study proposes a vaccine constructed based on top-ranking cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and B cell lymphocyte (BCL) epitopes from filtered proteins. In addition to the selected epitopes, ß-defensins adjuvant and PADRE peptide were included in the constructed vaccine to improve the stimulated immune response. Computational tools were used to estimate the physicochemical and immunological features of the proposed vaccine and validate its binding with TLR-2, where the output data of these assessments potentiate the probability of the constructed vaccine to stimulate a specific immune response against mucormycosis. Here, we demonstrate the approach of potential vaccine construction and assessment through computational tools, and to the best of our knowledge, this is the first study of a proposed vaccine against mucormycosis based on the immunoinformatics approach.


Subject(s)
Fungal Vaccines/chemistry , Fungal Vaccines/immunology , Mucormycosis/prevention & control , Rhizopus/immunology , Adjuvants, Immunologic , Antigens, Fungal/immunology , Computational Biology , Cross Reactions , Epitope Mapping , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Humans , Models, Molecular , Mucorales/immunology , Protein Conformation , Toll-Like Receptor 2/chemistry , Vaccines, Subunit/chemistry , Vaccines, Subunit/immunology
17.
Molecules ; 26(20)2021 Oct 13.
Article in English | MEDLINE | ID: covidwho-1470934

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, the causative agent of coronavirus disease (COVID-19)) has caused relatively high mortality rates in humans throughout the world since its first detection in late December 2019, leading to the most devastating pandemic of the current century. Consequently, SARS-CoV-2 therapeutic interventions have received high priority from public health authorities. Despite increased COVID-19 infections, a vaccine or therapy to cover all the population is not yet available. Herein, immunoinformatics and custommune tools were used to identify B and T-cells epitopes from the available SARS-CoV-2 sequences spike (S) protein. In the in silico predictions, six B cell epitopes QTGKIADYNYK, TEIYQASTPCNGVEG, LQSYGFQPT, IRGDEVRQIAPGQTGKIADYNYKLPD, FSQILPDPSKPSKRS and PFAMQMAYRFNG were cross-reacted with MHC-I and MHC-II T-cells binding epitopes and selected for vaccination in experimental animals for evaluation as candidate vaccine(s) due to their high antigenic matching and conserved score. The selected six peptides were used individually or in combinations to immunize female Balb/c mice. The immunized mice raised reactive antibodies against SARS-CoV-2 in two different short peptides located in receptor binding domain and S2 region. In combination groups, an additive effect was demonstrated in-comparison with single peptide immunized mice. This study provides novel epitope-based peptide vaccine candidates against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/chemistry , COVID-19/prevention & control , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/chemistry , SARS-CoV-2/metabolism , Amino Acid Sequence , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/metabolism , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , Female , Humans , Immunization , Mice , Mice, Inbred BALB C , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
18.
Cells ; 10(10)2021 10 03.
Article in English | MEDLINE | ID: covidwho-1444119

ABSTRACT

The data currently available on how the immune system recognises the SARS-CoV-2 virus is growing rapidly. While there are structures of some SARS-CoV-2 proteins in complex with antibodies, which helps us understand how the immune system is able to recognise this new virus; however, we lack data on how T cells are able to recognise this virus. T cells, especially the cytotoxic CD8+ T cells, are critical for viral recognition and clearance. Here we report the X-ray crystallography structure of a T cell receptor, shared among unrelated individuals (public TCR) in complex with a dominant spike-derived CD8+ T cell epitope (YLQ peptide). We show that YLQ activates a polyfunctional CD8+ T cell response in COVID-19 recovered patients. We detail the molecular basis for the shared TCR gene usage observed in HLA-A*02:01+ individuals, providing an understanding of TCR recognition towards a SARS-CoV-2 epitope. Interestingly, the YLQ peptide conformation did not change upon TCR binding, facilitating the high-affinity interaction observed.


Subject(s)
COVID-19/immunology , COVID-19/virology , Epitopes, T-Lymphocyte/chemistry , HLA-A2 Antigen/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , CD8-Positive T-Lymphocytes/cytology , Crystallography, X-Ray , Cytokines/metabolism , Epitopes/chemistry , HLA-A2 Antigen/chemistry , Humans , Mutation , Peptides/chemistry , Protein Binding , Protein Denaturation , Protein Folding , Surface Plasmon Resonance , T-Lymphocytes, Cytotoxic/immunology
19.
Immunogenetics ; 73(6): 459-477, 2021 12.
Article in English | MEDLINE | ID: covidwho-1427234

ABSTRACT

Since 2019, the world was involved with SARS-CoV-2 and consequently, with the announcement by the World Health Organization that COVID-19 was a pandemic, scientific were an effort to obtain the best approach to combat this global dilemma. The best way to prevent the pandemic from spreading further is to use a vaccine against COVID-19. Here, we report the design of a recombinant multi-epitope vaccine against the four proteins spike or crown (S), membrane (M), nucleocapsid (N), and envelope (E) of SARS-CoV-2 using immunoinformatics tools. We evaluated the most antigenic epitopes that bind to HLA class 1 subtypes, along with HLA class 2, as well as B cell epitopes. Beta-defensin 3 and PADRE sequence were used as adjuvants in the structure of the vaccine. KK, GPGPG, and AAY linkers were used to fuse the selected epitopes. The nucleotide sequence was cloned into pET26b(+) vector using restriction enzymes XhoI and NdeI, and HisTag sequence was considered in the C-terminal of the construct. The results showed that the proposed candidate vaccine is a 70.87 kDa protein with high antigenicity and immunogenicity as well as non-allergenic and non-toxic. A total of 95% of the selected epitopes have conservancy with similar sequences. Molecular docking showed a strong binding between the vaccine structure and tool-like receptor (TLR) 7/8. The docking, molecular dynamics, and MM/PBSA analysis showed that the vaccine established a stable interaction with both structures of TLR7 and TLR8. Simulation of immune stimulation by this vaccine showed that it evokes immune responses related to humoral and cellular immunity.


Subject(s)
COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Amino Acid Sequence , Base Sequence , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/metabolism , Computational Biology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , HLA Antigens/immunology , Humans , Immunogenicity, Vaccine , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Weight , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Toll-Like Receptor 7/chemistry , Toll-Like Receptor 8/chemistry , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Subunit/metabolism , Vaccinology , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/immunology
20.
BMC Bioinformatics ; 21(Suppl 17): 484, 2020 Dec 14.
Article in English | MEDLINE | ID: covidwho-1388725

ABSTRACT

BACKGROUND: We previously introduced PCPS (Proteasome Cleavage Prediction Server), a web-based tool to predict proteasome cleavage sites using n-grams. Here, we evaluated the ability of PCPS immunoproteasome cleavage model to discriminate CD8+ T cell epitopes. RESULTS: We first assembled an epitope dataset consisting of 844 unique virus-specific CD8+ T cell epitopes and their source proteins. We then analyzed cleavage predictions by PCPS immunoproteasome cleavage model on this dataset and compared them with those provided by a related method implemented by NetChop web server. PCPS was clearly superior to NetChop in term of sensitivity (0.89 vs. 0.79) but somewhat inferior with regard to specificity (0.55 vs. 0.60). Judging by the Mathew's Correlation Coefficient, PCPS predictions were overall superior to those provided by NetChop (0.46 vs. 0.39). We next analyzed the power of C-terminal cleavage predictions provided by the same PCPS model to discriminate CD8+ T cell epitopes, finding that they could be discriminated from random peptides with an accuracy of 0.74. Following these results, we tuned the PCPS web server to predict CD8+ T cell epitopes and predicted the entire SARS-CoV-2 epitope space. CONCLUSIONS: We report an improved version of PCPS named iPCPS for predicting proteasome cleavage sites and peptides with CD8+ T cell epitope features. iPCPS is available for free public use at https://imed.med.ucm.es/Tools/pcps/ .


Subject(s)
Epitopes, T-Lymphocyte , Proteasome Endopeptidase Complex/metabolism , Proteomics/methods , SARS-CoV-2 , Viral Proteins , COVID-19/virology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/metabolism , Humans , Peptides/chemistry , Peptides/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Software , Viral Proteins/chemistry , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL